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A better least-squares method when beth variables have uncertainties

Matthew Lybanon

Oceanography Divisior. Naval Ocean Rescarch und Development Activity, NSTL, MS 39529

(Received 27 December 1982; accepted for publication 29 April 1983

The generalized least-squares problem, in which an observation vector satisfies a set of equations
that may be nonlinear and implicit, and all components may be subject toerrors, can be solved asa
constrained mininuzation problem. When the analysis is specialized to the important case of one-
dimensional curs e fitting to measurements where both variables contain errors, it becomes similar
to the effective variance method. A standard least-squares computer program can be used to apply
the new method: the results are superior to these of the effective variance technique A simple
geometrical construction illustrates the principles of the new method.

1. INTRODUCTION

A recent paper by Jefferys' considerad the generalized
least-squares problem: A vector of observations satisfies a
set of equations that may ke nonlinear and is not necessar-
iy solvable in the explicit form y = £ix1: ali of the compo-
nents of the vector of observations may be subject to mea-
surement errors. The standard least-squares regression
technique, even when extended to nonlinear models. con-
tains the mmplicii assunagtion that xois free of error, this is
hardly ever true in practice.

The method that Jefferys presents is more general than
the conventional method and avoids the latter’s inadequa-
cles in formulation. Also, Jefferys makes two very impor-
rant points:

111 The standard method’s assumption that one variable
I8 subject to error and the other is error-free, when that
assumption is inappropriate. produces biased estimates of
the fit parameters. 1Generalizations to higher dimensiona-
ity in all variables are included. | The biasis given explicitly
by Jefferys for the case of a straight line through the origin
where x. and not 3. contains all the measurement uncer-
tainty.

12) The major difference between the standard least-
squares solution procedure and the generalized method 15
that in the latter the expressions used in solving for the
result must be recomputed each iteration using the best
i.e.. revised) estimate of the observation vector as well as
improvad estimates of the fit parameters. This 1s a natural
outgrowth of the notion that the least-squares process 1s a
method of improving the observations via the mathemat-
1cal model.” However, the point may not be obvious if one
takes the common view of least squares solely as a method
of parameter determination.

Other authors have treated the generalized least-squares
problem: some have published iterative algorithms for fit-
ting arbitrary functions to observation vectors all of whose
components may possess uncertainty ias does Jefferys).' "
The principles have been discusced hefore in the American
Journal of Physics.” ' Yet those principles and techniques
seem not to be well-known, In particular, the results ob-
tained by Jefferys' are remarkably similar to those of Britt
and Luecke.* However, Jefferys appeared to be unaware of
the existence of the Britt-Luecke paper. or indeed of any of
the other works referred to by the present paper except tan
earlier edition of | the book by Deming. (There is no inten-
tion to imply anything maore than that the respective auth-
ors approached the problem in the same way. In Toot/ it is
“igmifiiant thar Jefferys wus apparently nor aware of the
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other work, because that supports the contention that such
methaods are not well known.j

The work by Jefferys is highlighted here because the ap-
proach is general, and the formulation is concise and com-
plete. In the next section the results presented by Jefferys
will be summarized. using the same notation. Following
that, it will be shown how the formalism. when applied to
an important special case, results in an algorithm that has
several advantages. That algorithm has pedagogical and
practical value because it is particularly easy to use, gives
better results than “effective-variance™ techniques,* and
has a convenient gcometrical interpretation.

II. FORMULATION
A. General

Jefferys! formulated the least-squares problem as the
minimization of a particular quadratic form,

§, = We 'V, (1
subject to the constraints

fix ~ v.a = 0, {21

gia) = 0. (3

In these equations x is a vector of observations with covar-
iance matrix (assumed known at feast up to a constant fac-
torie. The superscript 7" in Lq. (1) indicates transpose.
Equation 12} is a set of equations of condition. in which fis a
vector function of its arguments, v is the vector of actual
residuals (i.e.,x = x +~ v would have been the actual obser-
vations if there were no errors), and a is a vector of param-
eters. The same v appears in Eq. (1). Equation {3) is a set of
constraints on the parameters a. In all equations, a caret ( A}
above a symbol denotes an estimate of the quantity repre-
sented by that symbol.

A constrained minimization problem can be solved con-
veniently by the method of Lagrange multipliers, and that
is the approach Jefferys chose. The statement of the prob-
lem becomes: Find estimates Yand dof vanda,and Aand &
of the Lagrange multiplier vectors A and p. which mini-
mize

S= o '+ fRaR + g Ak, (4)
where x + ¥ has been abbreviated by x. The minimization
produces the normal equations

o 'V fuxap =0 (Sa)
fx.ay + gltad - 0, {5b)
fix.a) -0 {5c)
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gia) = 0. I15d)

In these equattons the subscripts X.a denote partial deriva-
tives with respect to the indicated varables. The symbol f |
for instance, 1s very compact notation for the matrix whose
i, jelement1s df / dx , evaluated at x = x.

The solution to Egs. 15m-15d) will give the solution to the
posed problem. if it exists. However, these equations are in
general nonlinear. The next step in Jefferys” approach is o
apply Newton's method to linearize the equations about an
approximate solution. Let the approximate solution be de-
noted by 1X.41, and let the hinear estimate of the corrections
be denoted by (€.81. (The reader should note in particular
that the solution includes all components of x. as well as the
parameters a. and the distiction between € and v should be
clear.i Then Egs. 15a1-15dy become

o v-é&~f =0, (6a)
Sip - gnl =0, 16b)
f f.e - f‘,s: . 16e!
g - g“f) = 0. tod)

At this pont, tn anticipation of the special case to be dis-
cussed in the next section, the set of constraints on the
parameters [Eq. 131] will be dropped. This causes a slight
simplification in the equations just stated: the second term
in Eq. 16b) and all of Eq. 16d) vanish. and the Lagrange
multipliers A are no longer needed.

Continuing the solution, if Eq. (6al is solved for €. the
result 1s

= — v - of . ()
When this. in turn. is substituted into Eq. 161,

f-fv-foff-fd=0, (81
which can be solved for the Lagrange multipliers

= Wif—f,¥+ £, (9)

where the weighting matrix Wis
W= ifof " (10]

The tsimplifiedi Eq. (6b) may now be solved to obtain the
reduced normal equation

fLWES = — f.Wo, (1
where
b=f-fi. (12)

The solution to Eq. (11} can be used to “update™” the param-
eter estimates,

=49 113

But in order to complete the iterative process, it is also
necessary to update x,

a

new

Kpew = X + € (14}

Fquation |6a) may be used to find €. After substituting ji
from Eq. 191 and performing s<ome manipulations, the final
result 1s

iII(‘\& = x -+ "ll('“ . ‘15’
where
Vew = — G, Wb - £ A A

This 1s equivalent to Eq. (13).
Jefferys suggests using X = x as an initial estimate of x

23 Am. J. Phys., Vol. 52, No. |, January 1984

{again, it must be emphasized that x will change). along
with some vector aof initial parameter “guesses’” fora. The
solution process consists of solving Eq. (11 for 8. using the
current estimates of everything, then substituting the re-
sulting & mnto Eq. (16) to obtain ¥, . Equations (13} and
(15) then give improved values of & and x. This constitutes
one iteration. Successive iterations are performed, if neces-
sary, until a set of convergence criteria are met, or until a
prespecified large number of iterations are performed with-
out reaching convergence. The latter method of stopping
the calculation may be necessary for one of two reasons: If
the problem is sufficiently complex and the initial estimates
are too far away, this linearized algorithm may not con-
verge to the solution at all. Or even if it does converge. the
finite thmited) precision of the machine may not permit
satisfaction of a severe convergence test.

The reason for duplicating Jefferys’ formulation here in
such detail is so that we can go from the general to the
specific in the next section with a minimum of effort but
with confidence in the validity of the results. The resulting
algorithm will be amenable to a particularly simple imple-
mentation.

B. One-dimensional curve fitting

The preceding section has been entirely general. It treat-
ed the least-squares fitting of any relationship of the form
fix) = 0. where x is a vector of observations (and the depen-
dence on the adjustable parameters has been suppressed).
By far the most frequent application of least squares is to
cases in which the functional relaticnship has the explicit
form

y = ulx), (17)

where both x and y are scalars. There is some slight confu-
sion in notation; the components of x for the /th observa-
tion are (x, .y, )i = 1,2.....N, where N, is the number of ob-
servations). The vector function f(x) has &' components,
f. = ulx,.a) — y,. The vector of parameters a has m compo-
nents. We assume uncorrelated measurements (x,,y,), SO
the matrix o is diagonal.

A few of the matrices will be displayed explicitly, along
with their dimensions:

A 0 0
0 o,° 0
o=| 0 0 o, 0 (2N x2N),  (18)
0 0 0 T
do ) o0 0 0
ax,
du,
k=0 o Z& _ 0 | (Nx2N),
ox,
o 0o o o 1
(19)
Matthew Lybanon 23




T Ju, du, du, ]
(?—a, 8—(; 3‘:
f, =| da, da, da,, | LV = 1201
du, du, du,
| 9a, da.  Oa,

The partial derivatives in Egs. (191and 1201 are evaluated at
(X.4) at each stage of the iterative calculation. The vector of
actual residuals 1s

"
— X 12 -1 12h

X,

¥
v=| x,

Jo—y

In Eq. 210§, = s,

Using these relations, 1t can be seen that f, of, 1s now an
N -V diagonal matrix whose ith diagonal element is
idu. / Ix r*o, + o,,. Consequently, Eq. {10} shows that
the weighting matrix Wis alsoan .V + V diagonal matrix,
whose ith diagonal element is

e N i
o[ e]

And the vector &. defined in Eq. 112, 1s the .V . 1 vector
whose ith element is

22

22)

b = - (y, —ulk, Al — é"—wc, 3 \). (23)
dx,
[Once again. the partial derivatives in both equations are
evaluated at (X.4).]

Reference to Fig. 1 (which suppresses the index /) shows
that ¢, is the negative of the quantity shown asd (i.e..d,):

b = —d,. {24}
Note furthermore that. to a good approximation,
6~ — R, =ulx, 4l —y,. {25)

Figure 1 depicts the region near one observation in a
space with {x,y) normalized so that the variances at that
pointare unity. From Eqs. (1)and (21} it can be seen that the
sum of squares §,, reduces to a sum of terms of the form
LD, ", where the line of length D, is a perpendicular from
{x,p) to the curve at (x,uix)). This provides a convenient
geometrical interpretation of generalized least squares for
this important special case.

It is now possible to carry out Jefferys’ solution proce-
dure. The first step is to solve Eq. (11} for 8. In the present
case,

> Ju du
fLWE,), = Cw, T 26
( )l AZI (9(1, ‘ c?a/ (262]
. Y Ju Y du,
‘f’.“&) = - : Wndn—‘ - , Wan' (26b
’ ,.Z. 80) nzl da, !

Consequently, with the second form of Eq. {26b), Eq. (11} is
exactly the equation obtained for the successive differential
corrections to the parameters in the standard least-squarcs
method, with two exceptions:

{11 All of the partial derivatives, with respect to both x
and a, are evaluated at (%.4) instead of (x.4).
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Fig. 1. Least-squares geomety i transformed space with umit variances

{2) The weights in the W matrix are of the form

du,\* ]!
W.’ = — o, + a,,” . ‘27)
dx,

These are the effective variance weights.” They have been
shown previously to be the appropriate weights to use for
least squares when both x and y observations are subject to
error.'*'" However, the effective-variance algorithm de-
scribed in those references neglected the other ““exception”
above. Consequently, it has been found that it almost never
gives an exact least-squares solution.'”

Because the method derived in this section is formally
identical to standard least squares, with the exceptions not-
ed above, it has the very important practical advantage that
it can be implemented simply by making slight modifica-
tion to existing curve fit computer software. The standard
method effectively assumes that there are no x residuals—
in other words, that there is no uncertainty in the x obser-
vations. Consequently, it is not applicable when there are x
uncertainties. When it is applied in such cases it produces
biased fits, as Jefferys showed.' However, with the relative-
ly minor changes indicated above, a computer program
that was designed for the standard method can be used for
the general problem.

The approximation of replacing d, by R, still remains, so
it may appear that the result of all the foregoing algebra
was just to replace one approximate method—effective
variance—with another. But it will be seen that the new
method s a much better approximation than the effective
variance technique. while retaining the 1atter’s ease of im-
piementation. Furthei, Fig. | provides a consistent geo-
metrical interpretation of the method that is of pedagogical
value. The use of the Figure will continue below.

The one missing element is a method of improving the x

Matthew Lybanon 24




estimates, in order that we may evaluate the partial deriva-
tives at X rather that x. From Eqgs. (7) and (14)--(16),

€= —v—ofift=x—%x— offWid + f,d. {28)
Equation 128} is for the general case. [f we now specialize to
one-dimensional curve fitting and drop the f, 6 term, which
is 4 first-arder correction to the “updated™ a (1.e., & + &)
then the correction to X, is

. . . (iuv .5

dx =x — X 0, —Wé,
dx,

=X —X - 0,

du (. du, .
. u, -y, ~ —x, — x|
dx, ax,

A=) o. 0. | . (29)
Jx,

where &, stands for w1, .a). If we now define the separate x
and 1 weights
W.=1o "W, =1/0,. {30)

v

then Eqg. 1291 becomes

. . . ou, .
D"‘. = H v U", — U, J— - WU [x: - X, )
dx

[

a 2 1
[w (@) om]
ax,

Figure 1| provides an immediate geometrical interpreta-
tion. Assume that o, = o, = 1. |Again, we suppress the
index ¢.: Then the line of length D is perpendicular to the
curve and has the equation

- 1
VX -y = — (ﬁi> X — X). {32)
Jx

Now suppose that we have an X, that is an approximation
and wish to find a better one, x. The curve near x,, 1s given
by. to first order,

. . du .
uix.al = uly,.al ~ —0X, 133,
dx
where 8x = x — %,,. The needed correction from %, to x is
given by the simultaneous solution of Eqgs. {32) and (33).
The result 1s

O = (n_y ~ [‘,(?“ll - X — .%‘,) [(@—) -+ 1]. 134
ox dx

When the variables are “unnormalized” (transformed to
arbitrary variances) and allowance is made for the slight
changes in notation, Eq. (34) becomes identical to Eq. (311

Following Jefferys™ suggested algorithm of the preceding
section, a sketch of the solution procedure for one-dimen-

Table 1. Pearson’s data and York's weights.

t X, W v W,
| g.0 1000.0 5.9 1.0
2 0.9 1000.0 sS4 1.8
k] 1.8 S500.0 4.4 4.0
4 26 ROOGL0 46 X0
s 33 200.0 s 200
[ 4.4 R0 7 20.0
7 52 60.0 hE 70.0
3 6.1 200 28 70.0
9 6.5 1.8 24 100.0
10 7.4 1.0 1.8 SO0.0

dent variable. With the weights (22). Eqs. {26a} and (26b,
give the factors which go into Eq. (11) for the parameter
updates. In this case Eq. (11j is exactly that used to give
parameter updates in standard least squares. except that
the partial derivatives are evaluated at the improved %, and
the special choice of weights 122} is used. Equation 117 1s
iterated until a convergence test is passed or an iteration
limit is reached. The updates will change the weights, so
the entire procedure (variable updates and parameter up-
dates| is iterated until a suitable convergence criterion,
such as the effective variance criterion proposed by Clut-
ton-Brock,'* is satisified. It may also be desirable to check
the convergence of the independent variable estimates. The
overall sum of squares of residuals is another candidate for
a convergence check, since that is what is supposed to be
minimized.

1. EXAMPLES AND COMPARISON OF
METHODS

The method described in the last section was pro-
grammed and applied to several cases. The same program
{(*built™ around a standard least-squares program) was
used to perform least squares and effective variance fits.
The results are summarized below, along with published®
exact generalized least-squares results.

The cases consisted of polynomial fits to data given by
Pearson, who analyzed the problem of performing linear
fits to measurements with error in all variables as long ago
as 1901."” The weights [cf. Eq. (30)] used consisted of two
sets: unit weights on both x and y, all points, and a set of
weights used with Pearson's data by York.'" Pearson’s data
and York's weights are listed in Table I.

Table II shows the results of fits of a straight line,
v =a, + a.x. to the data of Table 1. S was calculated from

\
xmn.al curve mllng when x.und ¥ contain measurement er- S = Z [W.I% - x, P+ W =), (35)
ror is as follows: Eq. 131) gives the updates to the indepen- S
Table i Linear fits to Pearson’s data with York's weights
Calculated Standard Effective New Exact
value least squares variance algorithm solution
u 6 10010945 5.39605212 547991025 547991022
q 0.610812967 0.4634488KS 0.480533415 0.480333407
S 16.285266046 11.95644908 11.8663531941 11.86613511941
28 Am. J. Phys. Vol 52, No. 1, January 1984 Matthew Lybanon 25




Table I11. Polynomual fits to Pearson's data with unit weights or York's weights

S tor
Polynomual Standard Effectise New Exact
degree Weights least squares vanance algonthm solution
! Unut 0.620119636654 0.620119636554 0.6185727594137 0.618572759437
| York 16285266040 11.9564490%8 11.866353194] 11.866353194]
3 Unut (0.4873169486X3 0486178535205 0485155481449 0485152486927
R York 11 832634403 10.5919459561 10.487817449% 10.4869040577

0453000717248 0453000307869

0.450132996621

0.450325667217

N Ut

which is equivalent to Eq. t11 except for the factor of 1/2.
The values & are calculated directly as a by-product of the
calculation for the fits by the new algorithm and the exact
solvtion Far the other fits, EQ. t31) was used to find the %,
consistent with the fit parameters, in order to be able to
calculate S. The results show that the standard least-
squares solution s seriously in error and the effective vari-
ance solution is substantially better. but the result of the
new algorithm is identical to the exact solution within the
precision of the calculation. The latter happens because no
approximation is made by the new algorithm for linear fits,
since d, 1s exactly the same as R, . The effective variance
algorithm 1s not exact; since du, /da. = x. the failure to
update x tn the effective variance calculation prevents the
normal equation from producing a true minimum even
though the weights are formally correct.

Table HI shows the values of S obtained using each of the
fit procedures for various polynomial fits to Pearson's data
with either unit weights or York's weights. An interesting
situation oceurs in the case of straight-line fits with unit
weights. The value of S for the effective vanance fit is the
same as that for the standard least-squares fit. The two fits
are actually the same: the sets of coefficients are identical.
also. This result is not unexpected. Chandler'® showed
that. tor straight-line fits witho,, = cand o, = 7 forall i,
the effective variance algorithm gives the same result as
standard least squares. That solution is seen to be less than
optimum, but the result of the new algorithm is again iden-
tical to the exact solution.

For polyomial fits of higher degree. the new algorithm is
not exact. It is very nearly so, however, and it outperforms
the effective variance algorithm in every case. On a linear
scale which measures the percentage decrease in S from the
standard least-squares result to the exact solution, the ef-
fective variance method attained an average “‘score”™ of
48.638% . while the new algorithm averaged 99.927% .

The relative differences between coefficient values for
the different methods were even greater than the corre-
sponding differences between S values. In particular. in the
quintic polynomial fits the standard least squares and effec-
tive variance algorithms yielded some coefficients with sign
differences compared to the exact solution, while the new
algorithm’s result agreed very closely. The new algorithm
has also been used successfully to fit functions that depend
nonlinearly on the fit parameters. However. the cases pre-
sented are widely used in the hterature as standard test
cases, permitting easy comparison with other methods.

IV. CONCLUSION

The standard least-squares procedure should not be used
to perform curve fits when both x and y contain measure-

26 Am J Phys . Vol 52, No 1. January 1984

ment uncertainty, because the underlying assumptions are
violated and the method produces biased estimates of the
fit parameters.’ The effective variance technique, which
has been recommended in this Journal for use in such
cases,™ ' is usually better but is still not exact. A new meth-
od, which can be obtained as the result of specializing an
analysis of the generalized least-squares problem’ to the
case of one-dimensional curve fits to uncorrelated observa-
tions. gives better results but is no harder to use. One slight
approximation makes the new method formally identical
to the effective variance approach with one enhancement,
so it shares the latter method’s advantage that it can be
applied using a standard least squares computer program.
Tests prove that the new method is exact for linear regres-
sion |while the effective variance method is no better than
standard least squares when all the x uncertainties are
equal and all the y uncertainties are equal) and performs
better than the effective variance method in other cases.
There is a convenieut geometrical interpretation; in a sense
the new method is completelv described by Fig. 1.

The new method is genuinely easy to apply using a stan-
dard least-squares algorithm. A microcomputer imple-
mentation can be used to fit arbitrary functions. The author
has programmed the method for straight lines on the Texas
Instruments T1-59 programmable pocket calculator, using
the calculator’s built-in straight-line-fit capability. That
program is available on request.

The method introduced in the paper is an outgrowth of
procedures developed for calibration of the measurements
made in Skylab Experiment S-233, photographic photome-
try of Comet Kohoutek observations.
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